Huffman Simplification For Sequential Logic

For a well-defined State-Transition-Table, the Huffman Simplification is the common algorithm to simplify state-transition.

[table]=StateTransition()
{
	transitions
	{
	    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
	    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
	    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
	    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
	    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
	}
}
[simtable]=Simplification.HuffmanMealy(table);

Print("result:");
Print(simtable);

/*
The result should be :
result:
StateTransition()
{
  transitions
  {
    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
  }
  simplification
  {
    tabletype = "well-defined" ;
    algorithm = "equivalance" ;
    grouping
    {
      1:1;
      2:2,3;
      3:4,5;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 2/1'b0;
      2: [1] -> 2/1'b1, [2] -> 3/1'b0;
      3: [1] -> 3/1'b0, [2] -> 1/1'b1;
    }
  }
}

*/



Advanced Analysis IsPositiveFunction IsSelfAntiDualFunction Binary AbsoluteExpression MaxValue GrayCode OneComplement binary list() Minus Nor PositiveIntegerToMantissa RadixFromIndex To2LayerNor MaxSAT Assign InputVariables OutputAndStateBasedly GetExcitationTable Implementation To2layerOrAnd ShannonTree DontCare TruthTable Normalization SemanticEval ShannonExpansion Zero

Search This Website :

 
Buy website traffic cheap